Associate Professor Dr Katta Ramesh

Dr Katta Ramesh

Associate Professor Dr Katta Ramesh

  • Deputy Dean (Internationalisation)
Department of Pure and Applied Mathematics
SDGs Focus

Biography

Associate Professor Dr Katta Ramesh is the Deputy Dean (Internationalisation) in the School of Mathematical Sciences, Sunway University, Malaysia. He has more than 10 years of experience in the education field. He has been featured in Stanford University’s list of top 2% scientists worldwide in the years 2021, 2022 and 2023. He is serving as Associate Editor in the Journals Frontiers in Mechanical Engineering and Frontiers in Thermal Engineering. He is a Guest Editor for the special issues in the Journals Sustainability and Mathematics. He is also Editor of a book entitled “Mathematical modelling of fluid dynamics and nanofluids”. He has served as scientific advisory committee member in many international conferences. He has published more than 80 articles in reputed international Journals. Besides he published book chapters and conference proceedings. He is a reviewer for more than 50 reputed international Journals. His research work is concerned on the analytical and computational modelling of fluid flow problems arising in engineering and biomedical sciences.

Academic & Professional Qualifications

  • PhD in Applied Mathematics, Visvesvaraya National Institute of Technology, India (2016)
  • Master of Science, Osmania University, India (2008)
  • Bachelor of Science, Kakatiya University, India (2006)

Research Interests

  • Biofluid Dynamics
  • Computational Fluid Dynamics
  • Heat and Mass Transfer
  • Mathematical modelling

Notable Publications

  1. Ramesh, K., Warke, A.S., Kotecha, K., & Vajravelu, K. (2023). Numerical and artificial neural network modelling of magnetorheological radiative hybrid nanofluid flow with Joule heating effects. Journal of Magnetism and Magnetic Materials. doi: https://doi.org/10.1016/j.jmmm.2023.170552.

  2. Ramesh, K., Oudina, F.M., Ismail, A.I., Jaiswal, B.R., Warke, A.S., Lodhi, R.K., & Sharma, T. (2023). Computational analysis on radiative non-Newtonian Carreau nanofluid flow in a microchannel under the magnetic properties. Scientia Iranica. doi: https://doi.org/10.24200/sci.2022.58629.5822.

  3. Nazeer, M., Ramesh, K., Hussain, F., & Shahzad, Q. (2023). Impact of gold and silver nanoparticles in highly viscous flows with different body forces. International Journal of Modelling and Simulation. doi: https://doi.org/10.1080/02286203.2022.2084217.

  4. Souayeh, B., &  Ramesh, K. (2023). Numerical scrutinization of ternary nanofluid flow over an exponentially stretching sheet with gyrotactic microorganisms. Mathematics. doi: https://doi.org/10.3390/math11040981.

  5. Kolsi, L., Hussein, A.K., Hassen, W., Said, L.B., Ayadi, B., Rajhi, W., Labidi, T., Shawabkeh, A., & Ramesh, K. (2023). Numerical study of a phase change material energy storage tank working with carbon nanotube-water nanofluid under Ha’il city climatic conditions. Mathematics. doi: https://doi.org/10.3390/math11041057.

  6. Sridhar, V., Khashi’ie, N.S., & Ramesh, K. (2023). Thermal and electroosmotic transport of blood copper/platinum nanofluid in a microfluidic vessel with entropy analysis. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. doi: https://doi.org/10.1177/09544089231161306.

  7. Ramesh, K., Asogwa, K.K., Oreyeni, T., Reddy, M.G., & Verma, A. (2023). EMHD radiative titanium oxide-iron oxide/ethylene glycol hybrid nanofluid flow over an exponentially stretching sheet. Biomass Conversion and Biorefinery. doi: https://doi.org/10.1007/s13399-023-04033-y.

  8. Prakash, J., Ramzan, M., Saleem, S., Verma, A., & Ramesh, K. (2023). Homotopy analysis on the bioinspired radiative magnesium and iron oxides/blood nanofluid flow over an exponential stretching sheet. Computational Particle Mechanics. doi: https://doi.org/10.1007/s40571-023-00600-2.

  9. Shah, N.A., Koriko, O.K., Ramesh, K., & Oreyeni, T. (2023). Rheology of bioconvective stratified Eyring-Powell nanofluid over a surface with variable thickness and homogeneous-heterogeneous reactions. Biomass Conversion and Biorefinery. doi: https://doi.org/10.1007/s13399-023-04234-5.

  10. Sridhar, V., Jayavel, P., Verma, A., Ghachem, K., Kolsi, L., & Ramesh, K. (2023). Thermal analysis on electromagnetic regulated peristaltic blood-based graphane/diamond nanofluid flow with entropy optimization. Numerical Heat Transfer, Part B: Fundamentals. doi: https://doi.org/10.1080/10407790.2023.2211731.

  11. Oreyeni, T., Akindele, A.O., Obalalu, A.M., Salawu, S.O., & Ramesh, K. (2023). Thermal performance of radiative magnetohydrodynamic Oldroyd-B hybrid nanofluid with Cattaneo-Christov heat flux model: Solar powered ship application. Numerical Heat Transfer, Part A: Applications. doi: https://doi.org/10.1080/10407782.2023.2213837.

  12. Gajbhiye, S., Warke, A.S., & Ramesh, K. (2023). Mathematical modeling and analysis of immiscible metallic based nanofluid flow in a microchannel with non-spherical nanoparticles. Mathematics and Computers in Simulation. doi: https://doi.org/10.1016/j.matcom.2023.05.022.

  13. Gajbhiye, S., Warke, A.S., Verma, A., & Ramesh, K. (2023). Thermal and multilayer analysis of magnetized dusty fluids under electroosmosis and pressure-driven effects in a microchannel. International Journal of Ambient Energy. doi: https://doi.org/10.1080/01430750.2023.2256338.

  14. Raje, A., Koyani, F., Bhise, A., & Ramesh, K. (2023). Heat transfer and entropy optimization for unsteady MHD Casson fluid flow through a porous cylinder: Applications in nuclear reactors. International Journal of Modern Physics B. doi:  https://doi.org/10.1142/S0217979223502934.

  15. Shamshuddin, MD., Salawu, S.O.,  Ramesh, K., Patil, V.S., & Humane, P. (2023). Bioconvective treatment for the reactive Casson hybrid nanofluid exponentially stretching flow with Ohmic dissipation and mixed convection. Journal of Thermal Analysis and Calorimetry. doi:  https://doi.org/10.1007/s10973-023-12465-x.

  16. Shamshuddin, MD., Anwar, S.,  Mishra S.R,, K.  Ramesh, K., & Mohamed, E. (2023). Homotopic simulation of MHD bioconvective flow of water-based hybrid nanofluid over a thermal convective exponential stretching surface. International Journal of Numerical Methods for Heat and Fluid Flow. doi:  https://doi.org/10.1108/HFF-03-2023-0128.

  17. Patil, V.S., Shamshuddin, MD., Ramesh, K., & Rajput, G.R. (2022). Slipperation of thermal and flow speed impacts on natural convective two-phase nanofluid model across Riga surface: computational scrutinization. International Communications in Heat and Mass Transfer, 135, 106135. doi: https://doi.org/10.1016/j.icheatmasstransfer.2022.106135.

  18. Li, Y.X., Alqsair, U.F., Ramesh, K., Khan, S.U., & Khan, M.I. (2022). Nonlinear heat source/sink and activation energy assessment in double diffusion flow of micropolar (non-Newtonian) nanofluid with convective conditions. Arabian Journal for Science and Engineering, 47, 859-866. doi: https://doi.org/10.1007/s13369-021-05692-7.

  19. Sridhar, V., & Ramesh, K. (2022). Performance of graphene and diamond nanoparticles on EMHD peristaltic flow model with entropy generation analysis. Physical Mesomechanics, 25(2), 168-180. doi: https://doi.org/10.1134/S1029959922020084.

  20. Sridhar, V., & Ramesh, K. (2022). Peristaltic activity of thermally radiative magneto-nanofluid with electroosmosis and entropy analysis. Heat Transfer, 51(2), 1668-1690. doi: https://doi.org/10.1002/htj.22369.

  21. Gajbhiye, S., Warke, A.S., & Ramesh, K. (2022). Heat transfer and fluid flow analysis of non-Newtonian fluid in a microchannel with electromagnetohydrodynamics and thermal radiation. Heat Transfer, 51(2), 1601-1621. doi: https://doi.org/10.1002/htj.22366.

  22. Devakar, M., Ramesh, K., & Vajravelu, K. (2022). Magnetohydrodynamic effects on the peristaltic flow of couple stress fluid in an inclined tube with endoscope. Journal of Computational Mathematics and Data Science, 2, 100025. doi: https://doi.org/10.1016/j.jcmds.2022.100025.

  23. Souayeh, B., Ramesh, K., Hdhiri, N., Yasin, E., Alam, M.W., Alfares, K., & Yasin, A. (2022). Heat transfer attributes of gold-silver-blood hybrid nanomaterial flow in an EMHD peristaltic channel with activation energy. Nanomaterials, 12(10), 1615doi: https://doi.org/10.3390/nano12101615.

  24. Warke, A.S., Ramesh, K., Oudina, F.M., & Abidi, A. (2022). Numerical investigation of the stagnation flow of radiative magneto-micro-polar liquid past a heated porous stretching sheet. Journal of Thermal Analysis and Calorimetry, 147, 6901-6912. doi: https://doi.org/10.1007/s10973-021-10976-z.

  25. Qian, W.M., Riaz, A., Ramesh, K., Khan, S.U., Khan, M.I., Chinram, R., & Alaoui, M.K. (2022). Mathematical modeling and analytical examination of peristaltic transport in flow of Rabinowitsch fluid with Darcy’s law: two-dimensional curved plane geometry. The European Physical Journal Special Topics, 231, 545-555. doi: https://doi.org/10.1140/epjs/s11734-021-00421-5.

  26. Sridhar, V., Ramesh, K., Tripathi, D., & Vivekanand, V. (2022). Analysis of thermal radiation, Joule heating and viscous dissipation effects on blood-gold couple stress nanofluid flow driven by electroosmosis. Heat Transfer, 51(5), 4080-4101. doi: https://doi.org/10.1002/htj.22490. 

  27. Rajashekhar, C., Ramesh, K., Tripathi, D., Vaidya, H., & Prasad, K.V. (2022). Heat transfer and electroosmosis driven MHD peristaltic pumping in a microchannel with multiple slips and fluid properties. Heat Transfer. doi: https://doi.org/10.1002/htj.22602.

  28. Shah, S., Ramesh, K., Azam, M., & Nayak, M.K., Bodewadt flow of non-Newtonian fluid with single-walled TiO2 nanotubes suspensions, Heat Transfer. doi: https://doi.org/10.1002/htj.22621.

  29. Nazeer, M., Hussain, F., Iftikhar, S., Khan, M.I., Ramesh, K., Shehzad, N., Baig, A., Kadry, S., & Chu, Y.M. (2022). Mathematical modeling of bio-magnetic fluid bounded within ciliated walls of wavy channel. Numerical Methods for Partial Differential Equations. doi: https://doi.org/10.1002/num.22763.

  30. Ramesh, K., Patel, A., & Madhav, R. (2022). Electroosmosis and transverse magnetic effects on radiative tangent hyperbolic nanofluid flow through porous medium. International Journal of Ambient Energy. doi: https://doi.org/10.1080/01430750.2020.1862912.

  31. Sridhar, V., & Ramesh, K. (2022). Entropy generation analysis on EMHD peristaltic propulsion of blood mediated gold-silver nanoparticles: Application to fatal diseases. Waves in Random and Complex Media. doi: https://doi.org/10.1080/17455030.2022.2027044.

  32. Sridhar, V., Ramesh, K., Reddy, M.G., Azese, M.N., & Abdelsalam, S.I. (2022). On the entropy optimization of hemodynamic peristaltic pumping of a nanofluid with geometry effects. Waves in Random and Complex Media. doi: https://doi.org/10.1080/17455030.2022.2061747.

  33. Gajbhiye, S., Warke, A.S., & Ramesh, K. (2022). Role of electromagnetic analysis in radiative immiscible Newtonian and non-Newtonian fluids through a microchannel with chemical reactions. Heat Transfer. doi: https://doi.org/10.1002/htj.22631.

  34. Prakash, J., Ramesh, K., Lodhi, R.K. (2022). Numerical analysis of electromagnetic squeezing flow through a parallel porous medium plate with impact of suction/injection. Waves in Random and Complex Media. doi: https://doi.org/10.1080/17455030.2022.2088890.

  35. Gajbhiye, S., Warke, A.S., & Ramesh, K. (2022). Analysis of energy and momentum transport for Casson nanofluid in a microchannel with radiation and chemical reaction effects. Waves in Random and Complex Media. doi:  https://doi.org/10.1080/17455030.2022.2097749.

  36. Ramesh, K., Tripathi, D., Bhatti, M.M., Ghachem, K., Khan, S.U., & Kolsi, L. (2022). Mathematical modeling and simulation of electromagnetohydrodynamic bio-nanomaterial flow through physiological vessels. Journal of Applied Biomaterials & Functional Materials. doi: https://doi.org/10.1177/22808000221114708.

  37. Oreyeni, T., Ramesh, K., Nayak, M.K., & Oladele, P.A. (2022). Triple stratification impacts on an inclined hydromagnetic bioconvective flow of micropolar nanofluid with exponential space-based heat generation. Waves in Random and Complex Media. doi: https://doi.org/10.1080/17455030.2022.2112994.

  38. Ramesh, K., & Prakash, J. (2021). Heat transfer enhancement in radiative peristaltic propulsion of nanofluid in the presence of induced magnetic field. Numerical Heat Transfer, Part A: Applications, 79(2), 83-110. doi: https://doi.org/10.1080/10407782.2020.1835089.

  39. Ramesh, K., Reddy, M.G., & Basma, S. (2021). Electro-magneto-hydrodynamic flow of couple stress nanofluids in micro-peristaltic channel with slip and convective conditions. Applied Mathematics and Mechanics (English Edition), 42, 593606. doi: https://doi.org/10.1007/s10483-021-2727-8.

  40. Ramesh, K., Kumar, D., Nazeer, M., Waqfi, D., & Hussain, F. (2021) Mathematical modeling of MHD Jeffrey nanofluid in a microchannel incorporated with lubrication effects: a Graetz problem. Physica Scripta, 96(2), 025225. doi: https://doi.org/10.1088/1402-4896/abd3c2.

  41. Marzougui, S., Oudina, F.M., Assia, A., Magherbi, M., Shah, Z., & Ramesh, K. (2021). Entropy generation on magnetoconvective flow of copper-water nanofluid in a cavity with chamfers. Journal of Thermal Analysis and Calorimetry, 143, 2203-2214. doi: https://doi.org/10.1007/s10973-020-09662-3.

  42. Ramesh, K., Madhav, R., & Patel, A. (2021). Numerical simulation of radiative MHD Sutterby nanofluid flow through porous medium in the presence of Hall currents and electroosmosis. International Journal of Applied and Computational Mathematics, 7, 30. doi: https://doi.org/10.1007/s40819-021-00971-1.

  43. Ramesh, K., Riaz, A., & Zahoor, A.D. (2021). Simultaneous effects of MHD and Joule heating on the fundamental flows of a Casson liquid with slip boundaries. Propulsion and Power Research, 10(2), 118-129. doi: https://doi.org/10.1016/j.jppr.2021.05.002.

  44. Marzougui, S., Bouabid, M., Oudina, F.M., Hamdeh, N.A. Magherbi, M., & Ramesh, K. (2021). A computational analysis of heat transport irreversibility phenomenon in a magnetized porous channel. International Journal of Numerical Methods for Heat & Fluid Flow, 31(7), 2197-2222. doi: https://doi.org/10.1108/HFF-07-2020-0418.

  45. Riaz, A., Bobescu, E., Ramesh, K., & Ellahi, R. (2021). Entropy analysis for cilia generated motion of Cu-Blood flow of nanofluid in an annulus. Symmetry, 13(12), 2358. doi: https://doi.org/10.3390/sym13122358.

  46. Ramesh, K., Kumar, D., & Waqfi, D. (2021). Significance of magnetohydrodynamics and modified Darcy’s law on the electro-osmotic propulsion of viscoelastic radiative nanofluid in a microchannel, Special Topics & Reviews in Porous Media, 12(5), 43-56. doi: 10.1615/SpecialTopicsRevPorousMedia.2021035780.

  47. Lodhi, R.K., Jaiswal, B.R., Nandan, D., & Ramesh, K. (2021). Numerical solution of two-parameter singularly perturbed convection-diffusion boundary value problems via fourth order compact finite difference method. Mathematical Modelling of Engineering Problems, 8(5), 819-825. doi: https://doi.org/10.18280/mmep.080519.

  48. Ramesh, K., Tripathi, D., Bhatti, M.M., & Khalique, C.M. (2020). Electro-osmotic flow of hydromagnetic dusty viscoelastic fluids in a microchannel propagated by peristalsis. Journal of Molecular Liquids, 314, 113568. doi: https://doi.org/10.1016/j.molliq.2020.113568.

  49. Ramesh, K., Khan, S.U., Jameel, M., Khan, M.I., Chu, Y.M., & Kadry, S. (2020). Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy. Surfaces and Interfaces, 21, 100749. doi: https://doi.org/10.1016/j.surfin.2020.100749.

  50. Lodhi, R.K., & Ramesh, K. (2020). Comparative study on electroosmosis modulated flow of MHD viscoelastic fluid in the presence of modified Darcy’s law. Chinese Journal of Physics, 68, 106-120. doi: https://doi.org/10.1016/j.cjph.2020.09.005.

  51. Kumar, D., Ramesh, K., & Chandok, S. (2020). Mathematical modeling and simulation for the flow of magneto-Powell-Eyring fluid in an annulus with concentric rotating cylinders. Chinese Journal of Physics, 65, 187-197. doi: https://doi.org/10.1016/j.cjph.2020.02.002.

  52. Riaz, A., Gul, A., Khan, I., Ramesh, K., Khan, S.U., Baleanu, D., Nisar, K.S. (2020). Mathematical analysis of entropy generation in the flow of viscoelastic nanofluid through an annular region of two asymmetric annuli having flexible surfaces. Coatings, 10(3), 213. doi: https://doi.org/10.3390/coatings10030213.

  53. Ramesh, K., & Prakash, J. (2019). Thermal analysis for heat transfer enhancement in electroosmosis modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. Journal of Thermal Analysis and Calorimetry, 138, 1311-1326. doi: https://doi.org/10.1007/s10973-018-7939-7.

  54. Ramesh, K., Akbar, N.S., & Usman, M. (2019). Biomechanically driven flow of a magnetohydrodynamic bio-fluid in a micro-vessel with slip and convective boundary conditions. Microsystem Technologies, 25(1), 151173. doi: https://doi.org/10.1007/s00542-018-3945-8.

  55. Ramesh, K., Tripathi, D., Beg, O.A., & Kadir, A. (2019). Slip and hall current effects on Jeffrey fluid suspension flow in a peristaltic hydromagnetic blood micropump. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43, 675-692. doi: https://doi.org/10.1007/s40997-018-0230-5.

  56. Kumar, D., Ramesh, K., & Chandok, S. (2019). Influence of an external magnetic field on the flow of a Casson fluid in micro-annulus between two concentric cylinders. Bulletin of the Brazilian Mathematical Society, New Series, 50(2), 515-531. doi: 10.1007/s00574-018-0114-8.

  57. Ramesh, K., Kumar, D., & Devakar, M. (2019). Electrokinetically modulated flow of couple stress magneto-nanofluids in a microfluidic channel. Heat Transfer-Asian Research, 48(1), 379-397. doi: 10.1002/htj.21389.

  58. Ramesh, K., & Devakar, M. (2019). Effect of endoscope on the peristaltic transport of a couple stress fluid with heat transfer: Application to biomedicine. Nonlinear Engineering, 8(1), 619-629. doi: https://doi.org/10.1515/nleng-2017-0166.

  59. Ramesh, K., & Joshi, V. (2019). Numerical solutions for unsteady flows of a magnetohydrodynamic Jeffrey fluid between parallel plates through a porous medium. International Journal for Computational Methods in Engineering Science and Mechanics, 20(1), 1-13. doi: https://doi.org/10.1080/15502287.2018.1520322.

  60. Ramesh, K., & Eytoo, S.A. (2019). Effects of thermal radiation and magnetohydrodynamics on Ree-Eyring fluid flows through porous medium with slip boundary conditions. Multidiscipline Modeling in Materials and Structures, 15(2), 492-507. doi: https://doi.org/10.1108/MMMS-05-2018-0103.

  61. Ramesh, K., Tripathi, D., & Beg, O.A. (2019). Cilia-assisted hydromagnetic pumping of biorheological couple stress fluids. Propulsion and Power Research, 8(3), 221-233. doi: https://doi.org/10.1016/j.jppr.2018.06.002.

  62. Ramesh, K., & Sharma, T. (2018). Effectiveness of radiation and Joule heating on hydromagnetic Carreau fluid through microfluidic channels with slip boundary conditions. Microsystem Technologies, 24(12), 4921-4932. doi: https://doi.org/10.1007/s00542-018-3908-0.

  63. Prakash, J., Ramesh, K., Tripathi, D., & Kumar, R. (2018). Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels. Microvascular Research, 118, 162-172. doi: https://doi.org/10.1016/j.mvr.2018.03.009.

  64. Kumar, D., Ramesh, K., & Chandok, S. (2018). Effectiveness of magnetic field on the flow of Jeffrey fluid in an annulus with rotating concentric cylinders. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(6), 305. doi: https://doi.org/10.1007/s40430-018-1232-3.

  65. Ramesh, K., & Devakar, M. (2018). Influence of magnetohydrodynamics on peristaltic flow of a Walters B fluid in an inclined asymmetric channel with heat transfer. World Journal of Engineering, 15(4), 450-467. doi: https://doi.org/10.1108/WJE-09-2017-0305.

  66. Ramesh, K., Reddy, M.G., & Devakar, M. (2018). Biomechanical study of MHD Prandtl nanofluid in a physiological vessel with thermal radiation and chemical reaction. Proceedings of the Institution for Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 232(4), 95-108. doi: https://doi.org/10.1177/2397791418809788.

  67. Ramesh, K. (2018). Effects of viscous dissipation and Joule heating on the Couette and Poiseuille flows of a Jeffrey fluid with slip boundary conditions. Propulsion and Power Research, 7(4), 329-341. doi: https://doi.org/10.1016/j.jppr.2018.11.008.

  68. Ramesh, K., & Devakar, M. (2017). Influence of heat transfer on the peristaltic transport of Walters B fluid in an inclined annulus. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(7), 2571-2584. doi: https://doi.org/10.1007/s40430-017-0782-0.

  69. Ramesh, K., & Devakar, M. (2017). Effect of heat transfer on the peristaltic transport of MHD second grade fluid through porous medium in an inclined asymmetric channel. Chinese Journal of Physics, 55(3), 825-844. doi: https://doi.org/10.1016/j.cjph.2016.10.028.

  70. Ramesh, K., & Devakar, M. (2017). Magnetohydrodynamic peristaltic flow of a pseudoplastic fluid in a vertical asymmetric channel through porous medium with heat and mass transfe. Iranian Journal of Science and Technology, Transactions A: Science, 41(1), 257-272. doi: https://doi.org/10.1007/s40995-017-0193-1.

  71. Ramesh, K., & Devakar, M. (2017). Peristaltic transport of MHD Walters B fluid through porous medium with heat transfer. Iranian Journal of Science and Technology, Transactions A: Science, 41(2), 489-504. doi: https://doi.org/10.1007/s40995-017-0255-4.

  72. Devakar, M., Ramesh, K., Chouhan, S., & Raje, A. (2017). Fully developed flow of non-Newtonian fluids in a straight uniform square duct through porous medium. Journal of the Association of Arab Universities for Basic and Applied Sciences, 23, 66-74. doi: https://doi.org/10.1016/j.jaubas.2016.04.001.

  73. Ramesh, K. (2016). Influence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channel. Journal of Molecular Liquids, 219, 256-271. doi: https://doi.org/10.1016/j.molliq.2016.03.010.

  74. Ramesh, K. (2016). Effects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous medium. Computer Methods and Programs in Biomedicine, 135, 1-14. doi: https://doi.org/10.1016/j.cmpb.2016.07.001.

  75. Ramesh, K., & Devakar, M. (2016). Effect of heat transfer on the peristaltic flow of Walters B fluid in a vertical channel with an external magnetic field. Journal of Aerospace Engineering, 29(2), 04015050. doi: https://doi.org/10.1061/(ASCE)AS.1943-5525.0000541.

  76. Ramesh, K., & Devakar, M. (2015). Magnetohydrodynamic peristaltic transport of couple stress fluid through porous medium in an inclined asymmetric channel with heat transfer. Journal of Magnetism and Magnetic Materials, 394, 335-348. doi: https://doi.org/10.1016/j.jmmm.2015.06.052.

  77. Ramesh, K., & Devakar, M. (2015). The effects of endoscope and heat transfer on the peristaltic flow of a second grade fluid in an inclined tube. Journal of Mechanics in Medicine and Biology, 16(2), 1650057. doi: https://doi.org/10.1142/S0219519416500573.

  78. Ramesh, K., & Devakar, M. (2015). Peristaltic transport of MHDWilliamson fluid in an inclined asymmetric channel through porous medium with heat transfer. Journal of Central South University, 22(8), 3189-3201. doi: https://doi.org/10.1007/s11771-015-2856-4.

  79. Ramesh, K., & Devakar, M. (2015). The influence of heat transfer on peristaltic transport of MHD second grade fluid through porous medium in a vertical asymmetric channel. Journal of Applied Fluid Mechanics, 8(3), 351-365. doi: https://doi.org/10.18869/acadpub.jafm.67.222.23471.

  80. Ramesh, K., & Devakar, M. (2015). Some analytical solutions for flows of Casson fluid with slip boundary conditions. Ain Shams Engineering Journal, 6, 967-975. doi: https://doi.org/10.1016/j.asej.2015.02.007.

  81. Ramesh, K., & Devakar, M. (2015). Effects of heat and mass transfer on the peristaltic transport of MHD couple stress fluid through porous medium in a vertical asymmetric channel. Journal of Fluids, 2015, 163832. doi: http://dx.doi.org/10.1155/2015/163832.